首页 > 团队队伍 > 水文水资源系 > 副教授 > 正文
尹家波
通讯员:   发布时间:2022-03-02  点击数:


尹家波,湖北鄂州人,1992年4月生,现任澳门新永利网站长聘副教授、牛津大学Honorary Research Associate、国家重点实验室固定研究人员。2017-2018年赴美国哥伦比亚大学开展博士生联合培养,2019年获澳门新永利网站工学博士学位后留校任教。

主持国家自然科学基金青年项目、国家自然科学基金科技活动项目、“十四五”国家重点研发计划项目子课题、中国博士后创新人才支持计划项目、湖北省自然科学基金、长江电力开放基金等10余项纵向研究课题。主要研究兴趣为全球及区域水循环、碳循环、陆地生态系统碳汇、全球变化水文学、大气动力学、植被遥感、机器学习与重力卫星等,提出了复合气候灾害对陆地生态系统碳汇的定量胁迫诊断技术,发展了极端水文事件对气候变化的热动力学响应模型,丰富了气候变化下水碳循环模拟及环境风险预测理论。担任China Africa Water Association青年委员会秘书长、长江技术经济学会青年委员会副秘书长、国际水文科学协会中国委员会(CNC-IAHS)统计水文分委会委员,担任NatureNature Communications等三十余个国际期刊和欧洲地球科学联盟OSPP评审专家。

招收研究生,欢迎咨询,联系邮箱:jboyn@whu.edu.cn

牛津大学个人主页:https://www.geog.ox.ac.uk/staff/jyin.html

谷歌学术个人主页:https://scholar.google.com/citations?user=9Na3qqQAAAAJ&hl=en&oi=ao

科研成果

近五年发表80余篇SCI/EI论文,其中以第一/通讯作者在Nature SustainabilityNature Communications(两篇)Geophysical Research LettersWater Resources ResearchHydrology and Earth System SciencesScience China Earth SciencesEarth’s FutureJournal of HydrologyEnvironmental Research Letters《科学通报》、《中国科学:地球科学》、《水利学报》等国内外权威期刊发表30余篇高水平成果(含3篇ESI高被引、6篇《中国科学》),授权34项发明专利、35项实用新型专利、6项软件著作权。相关成果获得2021 WRR Editors’ Choice Awards(排名1)、全国水利类优秀博士学位论文、中国水利青年科技论文(英文)竞赛第一名、美国Committee of 100百人会英才奖、全国零碳科技十佳萃选学术论著(排名1)、湖北省科技进步一等奖(排名10)、长江科学技术奖二等奖(排名4)、大禹水利科学技术奖三等奖(排名8)、澳门新永利网站十大学术之星、澳门新永利网站十大杰出青年等奖励,相关研究成果被英国牛津大学、美国哥伦比亚大学、联合国减灾办公室(UN Office for Disaster Risk Reduction)、Science News、Eurek Alert!和Terra Daily等国际学术媒体高亮报道。

教学成果

指导本科生获第十四届老员工节能减排社会实践与科技竞赛全国三等奖、第十四届“挑战杯”老员工课外学术科技作品竞赛湖北省二等奖、“互联网+”老员工创新创业大赛省级银奖、最佳创意奖、澳门新永利网站第十三届“自强杯”老员工课外学术科技作品竞赛一等奖、澳门新永利网站第十四届“自强杯”老员工课外学术科技作品竞赛三等奖、澳门新永利网站第十一届“自强杯”老员工创业计划竞赛银奖、澳门新永利网站“挑战杯”预选赛特等奖。指导本科生开展四项老员工创新创业训练项目(两项国家级),指导本科生以第一作者发表《Earth’s Future》和《科学通报》等国内外权威期刊、授权10余项中国专利。获澳门新永利网站青年教师教学竞赛三等奖、澳门新永利网站青年教师教学竞赛二等奖、澳门新永利网站(中国)有限公司优秀班级导师;主持澳门新永利网站学位与研究生公司产品改革研究项目《“新工科”背景下土木水利专业学位研究生拔尖创新人才培养模式研究》,主持澳门新永利网站研究生导师育人方式创新项目《面向“双碳”战略目标的水利类研究生创新创业能力培养模式探索》,主持澳门新永利网站研究生研究学分课程《全球变化与水碳循环研究前沿》,主持澳门新永利网站本科教育质量建设综合改革项目子课题《面向“双碳”战略目标的水利类本科生创新创业能力培养模式探索》。

教育工作经历

2022.10-至今 牛津大学 Honorary Research Associate
2019.07-至今 澳门新永利网站 副研究员、副教授
2017.9-2018.10 哥伦比亚大学 联合培养博士生
2016.9-2019.6 澳门新永利网站 博士研究生
2014.9-2016.6 澳门新永利网站 硕士研究生
2010.9-2014.6 澳门新永利网站 本科
2007.9-2010.6 华中师大一附中 高中

国际媒体报道

牛津大学报道全球水碳循环研究进展:

https://www.ox.ac.uk/news/2023-01-06-compound-extreme-heat-and-drought-will-hit-90-world-population-oxford-study

哥伦比亚大学报道全球洪水研究进展:

https://www.engineering.columbia.edu/news/gentine-storm-runoff-flash-floods

联合国减灾办公室报道全球水碳循环研究进展:

https://www.preventionweb.net/news/compound-extreme-heat-and-drought-will-hit-90-world-population-oxford-study

ScienceDaily报道全球极端气候研究进展:

https://www.sciencedaily.com/releases/2018/10/181022085820.htm

美国地球物理联合会(AGU)报道气候变化研究进展:

https://mp.weixin.qq.com/s/Bw_G0kwW_ubmCK8M5FPcHg

https://mp.weixin.qq.com/s/IYunt0v3muNETvOOjoklPg

近五年代表性学术论文

[1]Yin J*, Gentine P, Slater L, et al. (2023). Future socio-ecosystem productivity threatened by compound drought-heatwave events[J].Nature Sustainability. 6: 259-272.(当期亮点论文)

[2]Yin J*& Slater L. (2023). Increase in drought-heatwave events worsens socioeconomic productivity and carbon uptake [J].Nature Sustainability. (News & Views) 6:241-242.

[3]Gu L,Yin J*, Gentine P, et al. (2023). Large anomalies in future extreme precipitation sensitivity driven by atmospheric dynamics.Nature Communications14: 3197.

[4]Yin J, Gentine P, Zhou S, et al. (2018). Large increase in global storm runoff extremes driven by climate and anthropogenic changes.Nature Communications9: 4389.

[5]Yin J, Gentine P, Guo S, et al. (2019). Reply to increases in temperature do not translate to increased flooding.Nature Communications10: 5675. (Matters Arising)

[6]Chai Y, Yue Y, Slater L,Yin J, Borthwick A, Chen T, Wang G. (2022). Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia.Nature Communications13: 4124.

[7]Lin J, Bryan B, Zhou X,…,Yin J, et al. (2023). Making China’s water data accessible, usable and shareable.Nature Water(Perspective) 1: 328-335.

[8]Yin J*, Slater L, Gu L, Liao Z, Guo S, Gentine P. (2022). Global increases in lethal compound heat stress-hydrological drought hazards under climate change.Geophysical Research Letters49(18): e2022GL100880.

[9]Yin J, Guo S, Yang Y, et al. (2022). Projection of droughts and their socioeconomic exposures based on terrestrial water storage anomaly over China.Science China Earth Sciences65(9): 1772-1787.

[10]Yin J, Guo S, Wang J, et al. (2023). Thermodynamic driving mechanisms for the formation of global precipitation extremes and ecohydrological effects.Science China Earth Sciences66: 92-110.

[11]Gu L,Yin J*, Slater L, et al. (2023). Intensification of global hydrological droughts under anthropogenic climate warming.Water Resources Research59(1): e2022WR032997.

[12]Tian B, Chen H,Yin J*, et al. (2023). Global scaling of precipitation extremes using near-surface air temperature and dew point temperature.Environmental Research LettersDOI 10.1088/1748-9326/acb836.

[13]Gu L, Chen J*,Yin J*, et al. (2022). Global increases in compound flood-hot extreme hazards under climate warming.Geophysical Research Letters49: e2022GL097726.

[14]Yin J, Guo S, Gentine P, et al. (2021). Does the hook structure constrain future flood intensification under anthropogenic climate warming?.Water Resources Research57: e2020WR028491. (Editors’ Choice Awards)

[15]Tian J, Pan Z, Guo S,Yin J, Zhou Y, Wang J. (2022). Response of active catchment water storage capacity to a prolonged meteorological drought and asymptotic climate variation.Hydrology and Earth System Sciences26: 4853-4874.

[16]Zeng Y, Liu D, Guo S, Xiong L, Liu P,Yin J, Wu Z. (2022). A system dynamic model to quantify the impacts of water resources allocation on water–energy–food–society (WEFS) nexus.Hydrology and Earth System Sciences26: 3965-3988.

[17]ShenY, Liu D, Jiang L, Nielsen K,Yin J, Liu J. (2022). High-resolution water level and storage variation datasets for 338 reservoirs in China during 2010–2021.Earth System Science Data14: 5671-5694.

[18]Xiong J,Yin J, Guo S, et al. (2022). Annual runoff coefficient variation in a changing environment: a global perspective.Environmental Research Letters17(6): 064006

[19]Yin J, Guo S, Gu L, et al. (2021). Blending multi-satellite, atmospheric reanalysis and gauge precipitation products to facilitate hydrological modelling.Journal of Hydrology593: 125878.

[20]Gu L,Yin J*, Zhang H, Wang HM, Yang G, Wu X. (2021) On future flood magnitudes and estimation uncertainty across 151 catchments in mainland China.International Journal of Climatology41(S1): E779-E800.

[21]Yin J, Guo S, Gu L, et al. (2020). Projected changes of bivariate flood quantiles considering sampling uncertainty based on multi-model ensembles over China.Journal of Hydrology585: 124760.

[22]Gu L, Chen J*,Yin J*, Xu C-Y, & Zhou J. (2020). Responses of precipitation and runoff to climate warming and implications for future drought changes in China.Earth's Future8(10): e2020EF001718.

[23]Gu L, Chen J*,Yin J*, Sullivan SC, Guo, S, Jong-Suk K. (2020). Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2° C warmer climates.Hydrology and Earth System Sciences24(1): 451-472.

[24]Yin J, Guo S, He SK, et al. (2018). A copula-based analysis of projected climate changes to bivariate flood quantiles.Journal of Hydrology566: 23-42.

[25]Yin J, Guo S, Liu ZJ, et al. (2018). Uncertainty Analysis of Bivariate Design Flood Estimation and its Impacts on Reservoir Routing.Water Resources Management32: 1795-1809.

[26]Yin J, Guo S, Wu XS, et al. (2018). A meta-heuristic approach for multivariate design flood quantile estimation incorporating historical information.Hydrology Research50 (2): 526-544.

[27]Yin J, Guo S, Liu ZJ, et al. (2017). Bivariate Seasonal Design Flood Estimation Based on Copulas.Journal of Hydrologic Engineering22(12): 05017028.

[28]Sullivan SC, Schiro K,Yin J, Gentine P. (2020). Changes in tropical precipitation intensity with El Niño warming.Geophysical Research Letters47(14): 1-9.

[29]Slater L, Villarini G, Archfiled S, Faulkner D, Lamb R, Khouakhi A,Yin J. (2021). Global changes in 20-year, 50-year and 100-year river floods.Geophysical Research Letters48(6): 2020GL091824.

[30]Wang R, Gentine P,Yin J, et al. (2021). Long-term relative decline in evapotranspiration with increasing runoff on fractional land surfaces.Hydrology and Earth System Sciences25:3805-3818.

[31]Xiong J,Yin J, Guo S, et al. (2021). Continuity of terrestrial water storage variability and trends across mainland China monitored by the GRACE and GRACE-Follow on satellites.Journal of Hydrology599: 126308.

[32]Xiong J,Yin J, Guo S, et al. (2021). Integrated flood potential index for flood monitoring in the GRACE era.Journal of Hydrology603(2):127115.

[33]Gu L, Chen J,Yin J, et al. (2020). Drought hazard transferability from meteorological to hydrological propagation.Journal of Hydrology585, 124761.

[34]He SK, Guo S, Chen KB, ... &Yin J. (2019). Optimal impoundment operation for cascade reservoirs coupling parallel dynamic programming with importance sampling and successive approximation.Advances in Water Resources131: 103375.

[35]Yang T, Sun F, Gentine P, Liu W, Wang H,Yin J, Du M, Liu CM. (2019). Evaluation and machine learning improvement of global hydrological model-based flood simulations.Environmental Research Letters14: 114027.

[36]He SK, Guo S,Yin J, et al. (2021). A novel impoundment framework for a mega reservoir system in the upper Yangtze River basin.Applied Energy305(12):117792.

[37]Yan X, Zhang B, Yao Y,Yin J, et al. (2022). Jointly using the GLDAS 2.2 model and GRACE to study the severe Yangtze flooding of 2020.Journal of Hydrology610(3-4):127927

[38]Xiong F, Guo S,Yin J, et al. (2020). Comparative study of flood regional composition methods for design flood estimation in cascade reservoir system.Journal of Hydrology590: 125530.

[39]Wu X, Guo S,Yin J, et al. (2018). On the event-based extreme precipitation across China: Time distribution patterns, trends, and return levels.Journal of Hydrology562: 305-317.

[40]尹家波,郭生练,王俊,等. (2023).全球极端降水的热力学驱动机理及生态水文效应.中国科学:地球科学. 53(1): 96-114.

[41]尹家波,郭生练,杨妍,等. (2022).基于陆地水储量异常预估中国干旱及其社会经济暴露度[J].中国科学:地球科学. 52(10): 2061-2076.

[42]尹家波,郭生练,顾磊,等. (2021).中国极端降水对气候变化的热力学响应机理及洪水效应.科学通报. 66(33): 4315-4325.

[43]杨远航,尹家波*,郭生练,等. (2023).中国陆域干旱演变预估及其生态水文效应.科学通报.68: 817-829.

[44]尹家波,郭生练,王俊,等. (2020).基于贝叶斯模式平均方法融合多源数据的水文模拟研究.水利学报. 51(11):1335-1346.

[45]尹家波,郭生练,吴旭树,等. (2018).两变量设计洪水估计的不确定性及其对水库防洪安全的影响.水利学报. 49(06):715-724.

[46]尹家波,郭生练,刘章君,等. (2017).设计洪水峰量最可能组合法的计算通式.工程科学与技术. 49(2): 69-76.

代表性发明专利(10项)

[1]尹家波,张官正,陈杰,等.一种集合气候模式下的分期设计洪水推求方法,2022, ZL201910433611.8

[2]尹家波,郭生练,王俊,等.基于动态启发式算法的多源降水产品的融合方法,2022, ZL202110096858.2

[3]尹家波,郭生练,何绍坤,等.基于机器学习融合多源遥感数据的水库调度规则优化方法, 2022, ZL202110053303.X

[4]尹家波,郭生练,于兵,等.一种水文循环变异驱动下二维干旱灾害评估方法,2022, ZL202010691987.1

[5]尹家波.基于集束径流预报的梯级水库优化调度方法, 2016, ZL201410510436.5

[6]尹家波,郭生练,顾磊,等.基于气候模式集合的洪涝灾害社会经济暴露度的评估方法,2022, ZL202110110958.6

[7]尹家波,郭生练,王俊,等.适用于缺资料地区的多变量设计洪水估计方法,2022,ZL202110132725.6

[8]尹家波,郭生练,于兵,等.一种融合卫星遥感和机器学习技术的流域水文模拟方法,2022, ZL 201910670559.8

[9]尹家波,郭生练,刘章君,等.一种基于Copula函数的坝址洪水还原方法,2017,ZL201510159076.3

[10]尹家波,郭生练,王俊,等.一种基于贝叶斯模式平均融合多源数据的水文模拟方法, 2022,ZL 202010691996.0

地址:武汉市武昌区东湖南路8号电话:027-68772215经理邮箱:sdxy@whu.edu.cn

Copyright © 澳门新永利网站(中国)有限公司